
SCSI Specification Revision    0.9.1    (Aug 6,
1990)
A low-level SCSI driver class based on sg (4)

ClassName SCSI
Superclass Object
Category Foundation
Other classes referenced <none>
Version 1      (v1.1)
Maturity Index Relatively mature
Requires Header Files SCSI.h
Author Jiro Nakamura
Organization Canon, Inc. -- NeXT

SE Div.
Created June 12, 1990
Last Modified August 6, 1990

 CLASS DESCRIPTION
The SCSI class is intended to be used as the foundation for a variety
of SCSI interface orientated devices. It provides the basic methods
and structures to enable its descendent classes to provide SCSI
driver support    to their users. It is based on the sg (4) generic
scanner driver.

Subclasses should first implement the methods that match the
commands that their SCSI device supports. These methods should
be named with the command name in lower-case as their prefix and
`SCSI' in upper-case as their suffix. Therefore, the INQUIRY
command becomes inquirySCSI. These methods should require
that the SCSI device be previously opened.

Using these basic methods, subclasses should implement macro
methods that wrap a number of (or even just one) commands into a
suitable method call for a user. These macro methods should not
have a SCSI suffix. The macro method should also open and close
the SCSI driver automatically for the user. The only interface that
the user should be provided with are the macro methods. The user
should not have to use any methods with a -SCSI suffix or even
know that the class is based on a SCSI driver. For example, the
ScanSCSI class based on SCSI requires its users to use only three
commands:

- (int) findDevice
- (int) initializeScanner
- (int) scanDocument::

All subclasses should implement the pseudo-basic method
findDeviceSCSI: (int) trg. This method should return the SCSI
target (ID) number of the first device starting from target trg on the
SCSI bus that the class is designed to handle. The findDevice and
findDevice: methods that are defined in this class both depend on
the subclass to implement findDeviceSCSI:. See the method

Class Specification: SCSI 1

description for findDeviceSCSI: for implementation hints

Methods should return 0 if they encounter no errors (command
successful) and non-zero for errors. Positive numbers are reserved
by the SCSI class. Subclasses should feel free to define and return
negative numbers for their own unique errors. To provide more
information about the error encountered, methods should fill the
class variable errorString with the error type in English.    Other
objects can retrieve errorString through the errorString method.

Subclass authors may find it handy to reference the following
documents:

the sg (4) manual page
the include file: <nextdev/scsireg.h>
the SCSI-1 and SCSI-2 ANSI specifications

The basic wrapping format for a SCSI command method is:
- myCommandSCSIwith: (struct myCommandStruct *) parameters
{

// Set up pointer to command block within SCSI
// request structure
struct cdb_6 *cdbp = &sr.sr_cdb.cdb_c6;

// Clear command block
[self clearCommandBlock: (union cdb *) cdbp];

// Set up command block, this is assuming your are using
// 6 byte commands
cdbp->c6_opcode = C6OP_MYCOMMAND;
cdbp->c6_lun = lun;
cdbp->c6_len = sizeof(*parameters);

// Set up SCSI request DMA parameters
sr.sr_dma_dir = SR_DMA_WR; // We are sending parameters
sr.sr_addr = (char *) parameters; // from this address
sr.sr_dma_max = sizeof(*parameters); // and so many bytes

sr.sr_ioto = 60; // Timeout if no response for 60 seconds

return [self performSCSIRequest]; // Now do an SCSI i/o operation
 // with these settings

}

The basic wrapping format for a macro method is:
- macroMethod: (struct myCommandStruct *) paramaters
{

BOOL scsiWasOpen; // Keeps track whether or not the driver
// was open when we called this method

int trg; // target number of SCSI device

scsiWasOpen = scsiOpen;

if(!scsiOpen)
if([self openSCSI])

{
strcpy(errorString, ªCouldn't open SCSI driver.º);
return -1;
}

if((trg = [self findMyDeviceSCSI]) == -1) // Where is our device?
{
strcpy(errorString, ªI can't find MyDevice! Check its status...º);
return -1; // I can't find it...
}

Class Specification: SCSI 2

[self setTarget: trg lun:0]; // We *must* set the target, lun before
// using basic methods or else...

[self myCommandSCSI_1]; // Do something
[self myCommandSCSIwith: parameter]; // Do something with a

// parameter

if(!scsiWasOpen) // If we opened the SCSI
if([self closeSCSI]) // driver, we should close

{ // it
strcpy(errorString, ªCouldn't close SCSI driver.º);
return -1;
}

return 0; // Command successful
}

Class Specification: SCSI 3

COPYRIGHTS
The SCSI class source, header, and documentation are all Copyright
(c) 1990 by Canon Inc. All Rights Reserved.

This class is provided for use by the general public. The class
interface header file (SCSI.h), source (SCSI.m) and documentation
(Class_SCSI.wn) may be freely copied and distributed as long as this
legend is included on all storage media and as part of the software
program and documentation.

WARRANTY
Jiro Nakamura, Canon, Inc., and/or any other party provide
this software "AS IS"    without warranty of any kind, either
expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a
particular purpose.

In no event unless required by applicable law will Jiro
Nakamura, Canon Inc., and/or any other party be liable to
you for diamages, including any lost profits, lost monies, or
other special, incidental or consequential damages arising
out of the use or inability to use (including but not limted to
loss of data or data being rendered inaccurate or losses
sustained by third parties or a failure of the program to
operate with any other programs) this software.

Class Specification: SCSI 4

MODIFICATIONS
Modifications should be returned to the author, Jiro Nakamura, to be
incorporated into future versions of this class. He can be contacted
at:

In the U.S.A (until June 1993):
Jiro Nakamura
c/o Reppy
493 Ellis Hollow Creek Rd.
Ithaca, NY 14850
USA

In Japan (indefinite):
Jiro Nakamura
2-15-3-702 Higashiyama
Meguro-ku, Tokyo 153
Japan

By E-mail (until June 1993):
ac6y@vax5.cit.cornell.edu        (Domain

based Internet)
uunet!vax5.cit.cornell.edu!ac6y (UUCP)

Through Canon:
Jiro Nakamura
NeXT SE Dept.
NeXT Computer Marketing Div.
Canon Inc.
Shin-Kawasaki Mitsui Bldg.
890-12, Kashimada
Saiwai-ku, Kawasaki-shi
Kanagawa 211
Japan

Class Specification: SCSI 5

INSTANCE VARIABLES
Inherited from Object Class isa;

Declared in SCSI BOOL scsiOpen;
int target,
lun;
char *errorString[100];
char *dev_name;
int fd;
struct scsi_req sr;
struct scsi_adr sa;

scsiOpen TRUE if the SCSI device is open, FALSE
otherwise.

target Target (SCSI ID) number for all SCSI
requests.

lun Logical unit of the target SCSI device

fd File descriptor (see open (3)) for the generic
SCSI device (see sg (4)).

sr generic SCSI driver request structure (see
sg (4) for more information and
<nextdev/scsireg.h> for the structure
definition).

sa generic SCSI driver target/lun address
change structure (see sg (4) for more
information and <nextdev/scsireg.h> for
the structure definition).

Class Specification: SCSI 6

METHOD TYPES

Opening, closing the driver openSCSI
openSCSIAt: lun:
closeSCSI

Setting the target, lun setTargetSCSI: lun:

Basic SCSI Methods testUnitReadySCSI
requestSenseSCSI:
inquirySCSI:
readCapacitySCSI:

Pseudo-basic SCSI Methods findDeviceSCSI: (subclass
responsibility)

Macro User Methods inquiry:
readCapacity:
findDevice
findDevice:

Error processing errorString

Variable accesser methods statusReq
scsiOpen

Private methods performSCSIRequest;
clearCommandBlock: (union cdb *)

cdb

Class Specification: SCSI 7

CLASS METHODS

clearCommandBlock:       
-    clearCommandBlock: (union cdb *) cdbp
This zeroes out all the bits in cdbp in preparation for a command
request. The union structure cdb is defined in <nextdev/scsireg.h>.
This is a private method which should only be used by subclasses of
SCSI.

closeSCSI
- (int) closeSCSI
This closes the SCSI generic driver and is required in order to
release the generic SCSI driver so that other programs can use it.
closeSCSI should be closed as soon as all immediate commands to
the device have been sent.

errorString
- (char *) errorString
This returns the class variable errorString which holds information
(in ASCII format) about the last error. It is the responsibility of
subclasses of SCSI to put the proper information in errorString when
an error occurs. (Said in a grave voice.)

findDevice
- (int) findDevice
This returns the target number of the first SCSI device that the
subclass can handle. It is actually a wrap for [self findDevice: 0].

findDevice:
- (int) findDevice: (int) trg
This is a macro wrap for the subclass define findDeviceSCSI:
pseudo-basic method. It returns the target number of the first SCSI
device starting with trg that the subclass can handle. Users can
request more information about the particular device with the
inquiry: command.

findDeviceSCSI:
- (int) findDeviceSCSI: (int) trg
Subclasses are mandatorily responsible for implementing this
command. It should return the target number of the first SCSI
device starting from target number trg that the subclass can
handle. The subclass method code should look something like:

- (int) findDeviceSCSI: (int) trg
{
int tmp;
struct inquiry_reply ibuffer;

Class Specification: SCSI 8

for(tmp = trg; tmp < 8; tmp ++)
{
if([self setTarget: tmp lun: 0]) // If no device at tmp

continue; // go on to next target
[self inquirySCSI: &ibuffer];
if(ibuffer.ir_devicetype == DEVTYPE_MYDEVICE &&

strncmp(ibuffer.ir_vendorid, MYVENDOR, MYVENDORLEN)==0)
return tmp; // We can handle this, return target
}

return -1; // Can't find our device, return -1
}

Macro method findDevice: wraps the above pseudo-basic
method(so-called because it has the -SCSI suffix required for basic
commands but isn't implemented by the device itself)    with
openSCSI and closeSCSI for the user.

inquiry:     
inquirySCSI:       

- (int) inquiry: (struct inquiry_reply *) inquiry_buffer
- (int) inquirySCSI: (struct inquiry_reply *) inquiry_buffer
This implements Mandatory SCSI command ªInquiryº (command
group 0, code 0x12). It returns the inquiry data in inquiry_buffer,
which is a structure defined in <nextdev/scsireg.h>.

openSCSI
- (int) openSCSI
This opens the SCSI generic driver and is required before any calls
to basic command methods (recognizable by their SCSI suffix). The
SCSI driver should be held open for as short a time as possible to
prevent conflicts with other programs that use it. A subclass can tell
whether the driver is open or not by the scsiOpen boolean variable.

openSCSIAt:    lun:   
- (int) openSCSIAt: (int) trg lun: (int) ln
This wraps the openSCSI and setTargetSCSI: lun: commands into
one command.

performSCSIRequest       
- (int) performSCSIRequest
This calls the generic SCSI driver with the parameters as set in class
variable sr. This is a private method which should only be
implemented by subclasses of SCSI which wish to make SCSI driver
command requests.

readCapacity:     
readCapacitySCSI:   

- (int) readCapacity: (struct readCapacity_reply *) reply_buffer
- (int)    readCapacitySCSI:    (struct readCapacity_reply *)

Class Specification: SCSI 9

reply_buffer
This implements Required SCSI command ªRead Capacityº
(command group 1, code 0x25) for direct-access devices. It returns
read capacity data (logical unit capacity and block length) in
reply_buffer, which is a structure defined in <SCSI.h>.

requestSense:     
requestSenseSCSI:       

- (int) requestSense: (struct esense_reply *) reply_buffer
- (int) requestSenseSCSI: (struct esense_reply *) reply_buffer
This implements Mandatory SCSI command ªRequest Senseº
(command group 0, code 0x03). It returns the sense data in
reply_buffer, which is a structure defined in <nextdev/scsireg.h>.

scsiOpen
- (BOOL) scsiOpen
Returns TRUE if the driver is open and accessible, FALSE otherwise.

setTargetSCSI:    lun:   
- (int) setTargetSCSI: (int) trg lun: (int) ln
This tells the generic SCSI driver to address all subsequent SCSI
request to the device at target (SCSI ID#) trg. Logical unit number
ln is remembered in class variable lun, but it is the role of the
implementation method to pass this information on when making
the SCSI request.

statusReq
- (struct scsi_req *) statusReq
This returns the status of the last SCSI request as a structure
defined in <nextdev/scsireg.h>.

testUnitReady   
testUnitReadySCSI   

- (int) testUnitReady
- (int) testUnitReadySCSI
This implements Mandatory SCSI command ªTest Unit Readyº
(command group 0, code 0x00). Returns 0 if no error (unit ready),
non-zero otherwise.

Class Specification: SCSI 10

